DeepFM
paper: https://www.ijcai.org/Proceedings/2017/0239.pdf
Simple Implementation of Deep FM with more than 1 fields and each field has only 1 feature
class FM(nn.Module):
def __init__(self,fea_dim = 5,emb_dim=8):
super(FM,self).__init__()
# latent embedding vectors
# each row = embedding vector of one feature
self.V = torch.randn(size = (fea_dim, emb_dim), dtype = torch.float32)
self.linear = nn.Linear(fea_dim,1, bias=True)
def forward(self, x):
# input x: (batch size, feature dimension or fields num if using DeepFM)
# linear logit part
linear_out = self.linear(x)
# second order part
# vector = (\sum^n_i V_ix_i)^2 - \sum^n_i V_i^2 * x_i^2
sum_square = torch.square(torch.matmul(x, self.V))
square_sum = torch.matmul(torch.square(x), torch.square(self.V))
cross_vec = 0.5*(sum_square - square_sum) # each row in matrix = crossing vector
return linear_out, cross_vec
class DeepFM(nn.Module):
def __init__(self, field_dim = 5,emb_dim=8):
# DeepFm consists of
# 1. embedding matrix for each field
# 2. convert each field to one embedding vector
# 3. FM for computing feature crossing
# 4. Convert embedding to input samples for DNN
# 3. DNN and input stacking embedding inputs
#
super(DeepFM, self).__init__()
self.FM = FM(field_dim,emb_dim)
dnn_input_size = emb_dim * field_dim
layers =[nn.Linear(dnn_input_size,256),
nn.ReLU(),
nn.Dropout(0.5)
]
# layers += layers
layers += [nn.Linear(256,1)]
self.DNN = nn.Sequential(*layers)
def forward(self, x):
# x: (batch size, number of features)
# each sample contain m embedding vectors, each represents one field
linear_out, cross_vec = self.FM(x)
cross_out = torch.sum(cross_vec,dim=1)
# extend embedding vectors from FM
embedding_list = []
for i in range(len(x)):
tmp = torch.unsqueeze(x[i], 0).T
# compute weighted embedding vector
vecs = torch.multiply(self.FM.V, tmp)
# extend embedding vectors to get a concatenated embedding vectors
# for DNN input
vecs = torch.flatten(vecs)
embedding_list.append(vecs)
# convert list of tensor to a tensor matrix as dnn input
embedding_list = torch.stack(embedding_list)
# print(embedding_list.shape)
print(linear_out.shape, cross_out.shape )
out = torch.tensor(0, dtype = torch.float32)
dnn_logit = self.DNN(embedding_list)
print(dnn_logit.shape)
linear_out= torch.squeeze(linear_out)
dnn_logit= torch.squeeze(dnn_logit)
out = linear_out + cross_out + dnn_logit
return torch.sigmoid(out)
field_dim = 5
emb_dim = 8
dfm = DeepFM(field_dim,emb_dim)
# there are 5 fields and each field has only 1 feature
x = torch.rand(size=(3,field_dim))
out = dfm(x)
out
Reference
Last updated