LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page

Was this helpful?

  1. Recommendation Algorithm
  2. Ranking

DeepFM

PreviousNeuralFMNextDeep&Cross network (DCN)

Last updated 4 years ago

Was this helpful?

paper:

Simple Implementation of Deep FM with more than 1 fields and each field has only 1 feature

class FM(nn.Module):
  def __init__(self,fea_dim = 5,emb_dim=8):
    super(FM,self).__init__()
    # latent embedding vectors
    # each row = embedding vector of one feature 
    self.V = torch.randn(size = (fea_dim, emb_dim), dtype = torch.float32)
    self.linear = nn.Linear(fea_dim,1, bias=True)
  def forward(self, x):
    # input x: (batch size, feature dimension or fields num if using DeepFM)
    # linear logit part
    linear_out = self.linear(x)
    # second order part
    # vector = (\sum^n_i V_ix_i)^2 - \sum^n_i V_i^2 * x_i^2
    sum_square = torch.square(torch.matmul(x, self.V))
    square_sum = torch.matmul(torch.square(x), torch.square(self.V))
    cross_vec = 0.5*(sum_square - square_sum) # each row in matrix = crossing vector
    return linear_out, cross_vec



class DeepFM(nn.Module):
  def __init__(self, field_dim = 5,emb_dim=8):
    # DeepFm consists of
    # 1. embedding matrix for each field
    # 2. convert each field to one embedding vector
    # 3. FM for computing feature crossing
    # 4. Convert embedding to input samples for DNN
    # 3. DNN and input stacking embedding inputs
    #
    super(DeepFM, self).__init__()
    self.FM = FM(field_dim,emb_dim)
    dnn_input_size = emb_dim * field_dim
    layers =[nn.Linear(dnn_input_size,256),
             nn.ReLU(),
             nn.Dropout(0.5)
             ]
    # layers += layers
    layers += [nn.Linear(256,1)]
    self.DNN = nn.Sequential(*layers)
  def forward(self, x):
    # x: (batch size, number of features)
    # each sample contain m embedding vectors, each represents one field
    linear_out, cross_vec = self.FM(x)
    cross_out = torch.sum(cross_vec,dim=1)

    # extend embedding vectors from FM 
    embedding_list = []
    for i in range(len(x)):
      tmp = torch.unsqueeze(x[i], 0).T
      # compute weighted embedding vector
      vecs = torch.multiply(self.FM.V, tmp)
      # extend embedding vectors to get a concatenated embedding vectors
      # for DNN input
      vecs = torch.flatten(vecs)
      embedding_list.append(vecs)
    # convert list of tensor to a tensor matrix as dnn input
    embedding_list = torch.stack(embedding_list)
    # print(embedding_list.shape)
    print(linear_out.shape, cross_out.shape )
    out = torch.tensor(0, dtype = torch.float32)
    dnn_logit = self.DNN(embedding_list)
    print(dnn_logit.shape)
    
    linear_out= torch.squeeze(linear_out)
    dnn_logit= torch.squeeze(dnn_logit)
    out = linear_out + cross_out + dnn_logit
    
    return torch.sigmoid(out)


field_dim = 5
emb_dim = 8
dfm = DeepFM(field_dim,emb_dim)

# there are 5 fields and each field has only 1 feature
x = torch.rand(size=(3,field_dim))
out = dfm(x)
out

Reference

https://www.ijcai.org/Proceedings/2017/0239.pdf
DeepCTR-Torch/interaction.py at 8265c75237e473c7f238fd6ba44cb09f55d1d9a9 · shenweichen/DeepCTR-TorchGitHub
Logo