LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page

Was this helpful?

  1. Recommendation Algorithm
  2. Ranking

Deep&Cross network (DCN)

PreviousDeepFMNextDeepLearning-Basic

Last updated 4 years ago

Was this helpful?

paper:

Implementation of DCN

import torch
from torch import nn
class CrossNet(nn.Module):
  def __init__(self, fea_dim = 5,embed_dim = 5, layer_num=3):
    super(CrossNet, self).__init__()
    self.weight = nn.Parameter(torch.randn(layer_num, fea_dim))
    self.bias = nn.Parameter(torch.randn(layer_num, fea_dim))
    self.layer_num = layer_num
  def forward(self, x):
    #
    #x: dense input  after concating embedding
    in_fea = x[:,:]
    # print(x.shape)
    for j in range(len(x)):
      x0 = x[j,:]
      for i in range(self.layer_num):
        in_fea[j,:] = x0 * torch.dot(in_fea[j,:],self.weight[i,:])  + self.bias[i,:] + in_fea[j,:]
        #print(in_fea[j,:].shape)

    # for i in range(self.layer_num):
    #   # dot product of vector weight[i,:] with all rows of input
    #   in_fea = torch.tensordot(in_fea,self.weight[i,:],dims=([1],[0]))
    #   in_fea = torch.multiply(in_fea,x)
    #   in_fea  += self.bias[i,:] + in_fea
    #   #print(in_fea[j,:].shape)
         
    return in_fea


class DCN(nn.Module):
  def __init__(self, fea_dim = 5,emb_dim=8, dense_dim =5):
    super(DCN, self).__init__()
    # using weight vector in each layer
    #embedding matrix
    self.V = nn.Parameter(torch.randn(fea_dim, emb_dim))
    
    dnn_input_size = emb_dim * fea_dim + dense_dim
    layers =[nn.Linear(dnn_input_size,256),
             nn.ReLU(),
             nn.Dropout(0.5)
             ]
    # layers += layers
    #layers += [nn.Linear(256,1)]
    self.DNN = nn.Sequential(*layers)

    self.CrossN = CrossNet(dnn_input_size, layer_num=3)
    self.linear = None#nn.Linear()

  def forward(self,x_dense, x_sparse):
    # 
    #convert feature to dense features
    embedding_list = []
    for i in range(len(x_sparse)):
      emb_vec = torch.multiply( torch.unsqueeze(x_sparse[i],1),self.V)
      emb_vec = torch.flatten(emb_vec)
      embedding_list.append(emb_vec)
    embedding_list = torch.stack(embedding_list)
    dense_input = torch.cat([embedding_list,x_dense],dim=1)
    cross_out = self.CrossN(dense_input)
    dnn_out = self.DNN(dense_input)
    #out = dnn_out + cross_out
    cat_out = torch.cat([dnn_out, cross_out],dim=1)
    if self.linear == None:
      self.linear = nn.Linear(cat_out.shape[1],1)
    out =self.linear(cat_out)
    print(dnn_out,cross_out)
    return out


fea_dim = 5
emb_dim=8
dense_dim =5
batch = 5
dcn = DCN(fea_dim = 5,emb_dim=8, dense_dim =5)


x_sparse = torch.randn(batch,fea_dim)<0.5
x_dense = torch.randn(batch,dense_dim)
out = dcn(x_dense, x_sparse)
out 

Reference:

https://arxiv.org/pdf/1708.05123.pdf
DeepCTR-Torch/interaction.py at 8265c75237e473c7f238fd6ba44cb09f55d1d9a9 · shenweichen/DeepCTR-TorchGitHub
Logo