LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page

Was this helpful?

  1. DataStructure
  2. DFS/BFS

Factor Combination-质数分解

PreviousAll Permutation II (with duplication and consider order)NextDynamicProgramming

Last updated 4 years ago

Was this helpful?

1. Link

2. 题目

Given an integer number, return all possible combinations of the factors that can multiply to the target number.

Example

Give A = 24

since 24 = 2 x 2 x 2 x 3

= 2 x 2 x 6

= 2 x 3 x 4

= 2 x 12

= 3 x 8

= 4 x 6

your solution should return

{ { 2, 2, 2, 3 }, { 2, 2, 6 }, { 2, 3, 4 }, { 2, 12 }, { 3, 8 }, { 4, 6 } }

note: duplicate combination is not allowed.

3. 思路

1. bt input: action set: [2, 3,4 ...  target], can not be 1
sols: final results,  sol: current result, target, start: action start from 2
2. terminal state: when target ==1 no need to factorize. Append sol when sol len >1
3.for current target, action is between start to target-1, check if target can be divided by action
if so append action and use dfs to next target/i, start = i (same factor may be used many times)
    

4. Coding

# class Solution(object):
#   def combinations(self, target):
#     """
#     input: int target
#     return: int[][]
#     """
#     # write your solution here
#     sol = []
#     sols = []
#     pos =2
#     self.bt(sols, sol,target, pos)
#     #sols.sort()
#     return sols
#   def bt(self, sols, sol,target,pos):
#     if target ==1:
#       if len(sol)>1:
#         sols.append(sol[:])
#         return

#     for i in range(pos, target+1):
#       if target%i ==0:
#         sol.append(i)
#         self.bt(sols, sol,target//i, i)
#         sol.pop(-1)
        
    
      
class Solution(object):
  def combinations(self, target):
    """
    input: int target
    return: int[][]
    """
    #idea: DFS 
    # 1. bt input: action set: [2, 3,4 ...  target], can not be 1
    #   sols: final results,  sol: current result, target, start: action start from 2
    # 2. terminal state: when target ==1 no need to factorize. Append sol when sol len >1
    # 3.for current target, action is between start to target-1, check if target can be divided by action
    #   if so append action and use dfs to next target/i, start = i (same factor may be used many times)
    #
    #base case: target =1
    if target ==1:
      return [[1]]
    sols = []
    sol = []
    start = 2
    self.bt(sols, sol, start, target)
    return sols
  def bt(self, sols, sol, start, target):
    if target == 1:
      if len(sol) >1:
        sols.append(sol[:])
      return 
    for i in range(start, target+1):
      if target%i == 0:
        sol.append(i)
        self.bt(sols, sol, i, target//i)
        sol.pop(-1)

如果只考虑所有质数,那就不用for loop直接看target能不能被start整除(之后start的倍数都会被直接跳过,因为target都已经不能被start整除那就更不可能被它的倍数整除)。如果可以就加上start,如果不行就跳过当前的start,进入下一个factor: start+1

class Solution(object):
  def combinations(self, target):
    """
    input: int target
    return: int[][]
    """
    #idea: DFS 
    # 1. bt input: action set: [2, 3,4 ...  target], can not be 1
    #   sols: final results,  sol: current result, target, start: action start from 2
    # 2. terminal state: when target ==1 no need to factorize. Append sol when sol len >1
    # 3.for current target, action is between start to target-1, check if target can be divided by action
    #   if so append action and use dfs to next target/i, start = i (same factor may be used many times)
    #
    #base case: target =1
    if target ==1:
      return [[1]]
    sols = []
    sol = []
    start = 2
    self.bt(sols, sol, start, target)
    return sols
  def bt(self, sols, sol, start, target):
    if target == 1:
      if len(sol) >1:
        sols.append(sol[:])
      return 
    
    if target%start == 0:
        sol.append(start)
        self.bt(sols, sol, start, target//start)
        sol.pop(-1)
    else:
        self.bt(sols, sol, start+1, target)

https://app.laicode.io/app/problem/404app.laicode.io