LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page

Was this helpful?

  1. DataStructure
  2. DFS/BFS

All Permutation II (with duplication and consider order)

PreviousAll Subset of K size III (with duplication without considering order)NextFactor Combination-质数分解

Last updated 4 years ago

Was this helpful?

1. Link

2. 题目

Given a string with possible duplicate characters, return a list with all permutations of the characters.

Examples

  • Set = “abc”, all permutations are [“abc”, “acb”, “bac”, “bca”, “cab”, “cba”]

  • Set = "aba", all permutations are ["aab", "aba", "baa"]

  • Set = "", all permutations are [""]

  • Set = null, all permutations are []

3. 思路

  1. 先把重复的char用dictionary表示除重,key= char, value= count action = key

  2. DFS method, 因为是考虑order顺序,所以需要用for loop对不同的char进行位置对换

  3. 对于重复的char,每次pick action时把它的count -= 1 表示剩下可以选的次数,如果没有,count=0,就选下一个action.这样能避免同一个level里面有相同的tree branch 分支,因为每次level选取的char都保证是不一样

  4. recursion tree 变成: exmaple

    For example:   str = "aaab"
    #       root
    #      a:1        b:2          the number represents the count of a that can be selected
    #   aa:0  ab:1      ba     
    #  aab    aba     baa   
    
    
    
    str = 'abbcdd'
    {'a':1, 'b':2, 'c':1, 'd':2}
                  a:1
              ab:1                   ac
         abb:0  abc:1,..      acb:1   acd
     abbc      acbb:0        ....
     

4. Coding

class Solution(object):
  def permutations(self, input):
    """
    input: string input
    return: string[]
    """
    # write your solution here
    # main idea:
    # to avoid duplicated tree branch due to duplicate string, we can restrict
    # each branch of tree contain distinct chars only
    # Then for the duplicated char, we can repeat the duplicated char in level of tree
    # For example:   str = "aaab"
    #       root
    #      a:1        b:2          the number represents the count of a that can be selected
    #   aa:0  ab:1      ba     
    #  aab    aba     baa   
    # Since we want to count the amount of duplicated char that can be selected, 
    # So it leads to the idea of using dictionary to store keys and counts
    # Time complexity: O(n) for dictionary construction,  O(B*H) for recursion tree traversal, 
    # O(n) for creating new string solution in tree node. 
    # So time complexity: O(n)+O(B*H)*O(n) = O(B*H)*O(n) in total
    # 
    # Space complexity:  O(n)  for build dictionary, O(H) for recursion, H= tree height, so O(H+n) in total

    sol = []
    sols = []
    ls = list(input)
    ls.sort()
    action = {}
    for c in ls:
      if c not in action.keys():
        action[c] = 0
      action[c] += 1
    pos = 0
    N = len(ls)
    self.bt(sols, sol, pos, N, action)
    return sols

  def bt(self, sols, sol, pos, N, action):
    if len(sol) == N:
      sols.append("".join(sol[:]))
      return

    for act in action.keys():
      if action[act] != 0:
        action[act] -= 1
        sol.append(act)
        self.bt(sols, sol, pos+1, N, action) 
        sol.pop(-1)
        # recover the count of char since we want to reuse it in other branches of recursion tree
        action[act] += 1

https://app.laicode.io/app/problem/65app.laicode.io