LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page
  • 1. Link
  • 2. 描述
  • 示例1
  • 示例2
  • 3. 思路
  • 4. Coding

Was this helpful?

  1. DataStructure
  2. Heap&Queue

Find the K-Largest

Previous滑动窗口最大值Next合并k个已排序的链表

Last updated 3 years ago

Was this helpful?

1. Link

2. 描述

示例1

输入:

[1,3,5,2,2],5,3

复制返回值:

2

复制

示例2

输入:

[10,10,9,9,8,7,5,6,4,3,4,2],12,3

复制返回值:

9

复制说明:

去重后的第3大是8,但本题要求包含重复的元素,不用去重,所以输出9

3. 思路

  1. method 1: heapsort

    1. use a min heap to store K elements

    2. continue appending elements to heap and then pop the minimum one and keep the largest K elements

    3. when we store the last K elements in heap, just pop the minimum one and return then it is the top K largest element

    4. Note: we need to first append next element into heap to have k+1 element , then pop the smallest one. Otherwise, it is possible that we pop the K^th largest element from heap, but insert the next element smaller than the top K^th largest element to heap. This is wrong, as we miss the K^th largest element

  2. method 2: quick select

    1. randomly pick pivot

    2. partition array by pivot and then return pivot position

    3. compare pivot position with K

      1. if pos >k: search left space of pivot recursively

      2. if pos < k: search right space of pivot recursively

      3. otherwise: return pos and a[pos]

4. Coding

method 1: Heap Sort

class Solution:
    def findKth(self, a, n, K):
        #
        # method 1. heap sort 
        # 1. use a min heap to store K elements
        #    continue appending elements to heap and pop the minimum element
        #    and keep the largst k-1 element
        # 2. when we append the last elemnt in list to the heap, then the minimum elment in heap
        #    is hte top K largest element  in list
        # 3. base case: when list has length < K, return None, doesn't exist top K largest element
        # Time: O(n+k + (n-k)log(k))
        import heapq
        
        if not a or  n< K :
            return None
        i = 0
        heap = []
        
        # time : O(k)
        while i < K:
            heap.append(a[i])
            i += 1
        # time: O(n)
        heapq.heapify(heap)
        # time: O((n-k)log(k) )
        res = None
        # Note: here we need to push the next element before poping the smallest one
        # since we want to keep the largest K elements
        # if we first pop then push, it is possible that we pop the K largest element and 
        # then push the smaller one into heap, so that we miss the the K largest
        
        while i < n:
            heapq.heappush(heap, a[i])
            heapq.heappop(heap)
            
            i += 1
        
        return heapq.heappop(heap)

method 2: QuickSelect, based on Quick Sort

有一个整数数组,请你根据快速排序的思路,找出数组中第 大的数。给定一个整数数组 ,同时给定它的大小n和要找的 ,请返回第 大的数(包括重复的元素,不用去重),保证答案存在。要求时间复杂度

寻找第K大_牛客题霸_牛客网
Logo