LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page

Was this helpful?

  1. DataStructure
  2. DFS/BFS

All Subset I (without fixing size of subset, without order, without duplication)

DFS;

PreviousCombinations Of CoinsNextAll Subset of K size without duplication II

Last updated 4 years ago

Was this helpful?

1.Link

2. 题目

Given a set of characters represented by a String, return a list containing all subsets of the characters.

Assumptions

  • There are no duplicate characters in the original set.

​Examples

  • Set = "abc", all the subsets are [“”, “a”, “ab”, “abc”, “ac”, “b”, “bc”, “c”]

  • Set = "", all the subsets are [""]

  • Set = null, all the subsets are []

3. 思路

  1. DFS

  2. In recursion tree, each level = one char, each branch = choose or no choose that char

  3. use pos, position of char to select each different char in action set in each level to avoid duplication of solution

  4. Time: O(2^n), n = number of action/char in list, since each action can be "pick" or "not pick", it is binary tree

  5. Space: O(logn)

4. Coding

# class Solution(object):
#   def subSets(self, setstr):
#     """
#     input : String setstr
#     return : String[]
#     """
#     # write your solution here
#     # if not setstr:
#     #   return setstr
#     # if len(setstr)==0:
#     #   return [""]
#     decision_set = list(setstr)
#     results = []
#     self.bt(results, [], 0, decision_set)
#     return results

#   def bt(self, results, result, cur_pos, decision_set):
#     if cur_pos == len(decision_set):
#       results.append("".join(result[:]))
#       return

#     # pick current char
#     result.append(decision_set[cur_pos])
#     self.bt(results, result, cur_pos+1, decision_set)
#     result.pop(-1)
#     # Not pick current char
#     self.bt(results, result, cur_pos+1, decision_set)



class Solution(object):
  def subSets(self, setstr):
    """
    input : String setstr
    return : String[]
    """
    # idea: DFS
    # action = char, sol: solution, sols : list of solutions, pos: position of action
    # in recursion tree:
    #  i^th level represent i^th char in action set
    #  branch of the level can be selecting this char, or  not select
    #  then each char is considered once so no char are duplicated, and we can find subset without duplication
    #
    # in recursion tree of dfs:
    # 1. if pos == len(action), all actions are checked, then append solution to sols
    # 2.  select one char in action set at pos
    # 3.  don't not select char in action set at pos, but just move forward to the next char
    #   so no char can be consider twices
    #
    # action = "abc"
    # pos= 0:a          a                     ""
    # pos= 1:b   ab          a""             b         ""
    # pos= 2:c  abc ab    ac     a"""      bc   b    c    ""
    #
    action = list(setstr)
    sol = []
    sols = []
    pos = 0
    self.bt(sols, sol, action, pos)
    return sols
  def bt(self, sols, sol, action, pos):
    if pos == len(action):
      sols.append(sol[:])
      return
    # considering current char
    sol.append(action[pos])
    self.bt(sols, sol, action, pos+1)
    sol.pop(-1)
    # without considering current char
    self.bt(sols, sol, action, pos+1)

https://app.laicode.io/app/problem/62app.laicode.io