LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page
  • 1. Link
  • 2. 描述
  • 示例1
  • 备注:
  • 3. 思路
  • 4. Coding# class TreeNode:

Was this helpful?

  1. DataStructure
  2. Tree

Tree-PreOrder-InOrder-PostOrder

PreviousPath Sum to Target in Binary TreeNextHeap&Queue

Last updated 3 years ago

Was this helpful?

1. Link

2. 描述

分别按照二叉树先序,中序和后序打印所有的节点。

示例1

输入:

{1,2,3}

复制返回值:

[[1,2,3],[2,1,3],[2,3,1]]

复制

备注:

n \leq 10^6n≤106

3. 思路

  1. Recursion method

  2. Iteration with Stack method

4. Coding# class TreeNode:

Tree_Traversal
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

#
# 
# @param root TreeNode类 the root of binary tree
# @return int整型二维数组
#
# class Solution:
#     def threeOrders(self , root ):
#         # write code here
#         preorder_res, inorder_res, postorder_res= [], [],[]
#         self.traverse(root, preorder_res, inorder_res,postorder_res)
#         return [preorder_res, inorder_res, postorder_res]
    
#     def traverse(self,node, pre_res, in_res,postres):
#         if not node:
#             return
#         pre_res.append(node.val)
#         self.traverse(node.left, pre_res, in_res, postres)
#         in_res.append(node.val)
#         self.traverse(node.right, pre_res, in_res, postres)
#         postres.append(node.val)



class Solution:
    def threeOrders(self , root ):
        # method 1: recursion tree
        # input: root tree node
        #  output: list of traversal list  [pre-order, in-order, post-order]
        # base case: not root: return [[],[],[]]
        #
        if not root:
            return [[],[],[]]
        pre_order, in_order, post_order = [], [], []
        self.traverse(root, pre_order, in_order, post_order)
        return [pre_order, in_order, post_order]
        
    def traverse(self, node,pre_order, in_order, post_order):
        if not node:
            return 
        #pre
        pre_order.append(node.val)
        self.traverse(node.left, pre_order, in_order, post_order)
        # in
        in_order.append(node.val)
        self.traverse(node.right, pre_order, in_order, post_order)
        # post
        post_order.append(node.val)
        
        
        
        
class Solution:
    def threeOrders(self , root ):
        # method 2:  iteration with stack
        #1. as each node is visited three times
        #    the first one: pre-order  -> pre-order
        #    the second one : after iterating the left subtree  and go back to parent -> in-order
        #    the third one: after iterating the right substree and go back to parent node -> post order
        #
        pre_order, in_order, post_order = [], [], []
        if not root:
            return [pre_order, in_order, post_order]
        stack = [(root, 0 )]
        while stack:
            node, cnt = stack.pop(-1)
            if cnt == 0:
                # preorder
                pre_order.append(node.val)
                stack.append((node, 1))
                if node.left:
                    stack.append((node.left, 0))
            if cnt == 1:
                in_order.append(node.val)
                stack.append((node, 2))
                if node.right:
                    stack.append((node.right, 0))
                    
            if cnt == 2:
                post_order.append(node.val)
                stack.append((node, 3))
        return [pre_order, in_order, post_order]
        
        





实现二叉树先序,中序和后序遍历_牛客题霸_牛客网
Logo