最长回文子序列-DP
Medium; DP; String
1. Link
这题考虑 substring的顺序,不能改变顺序来得到回文数
2. 题目
给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。
示例 1: 输入:
"bbbab" 输出:
4 一个可能的最长回文子序列为 "bbbb"。
示例 2: 输入:
"cbbd" 输出:
2
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/longest-palindromic-subsequence 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
3. 题目
idea: DP
dp[i][j]: 从string char s[i]到s[j]的最长回文数
当i == j , dp[i][j] =0 只有一个char
当 i!=j, s[i] == s[j], dp[i][j] = dp[i+1][j-1] + 2 这里的2是考虑char s[i]和s[j]
当 s[i] != s[j], dp[i][j] = max(dp[i+1][j], dp[i][j-1]) 分别把substring的头尾加到中间的substring然后看两者最大的长度
遍历时候,把string pointer i 从后面遍历到前面, 查找 substring i 到 len(s)-1 之间的substring
Time : O(n^2), Space:O(n^2)
4. Coding
class Solution:
def longestPalindromeSubseq(self, s: str) -> int:
#
#idea: DP
# state: dp[i] = max length of palindrome between char i and the last char in string
# transition function:
# if we have a substring s[i] s[i+1]...s[j]
# 如果 s[i] == s[j], 那么dp[i] = max length of palindrom from s[i+1] to s[j-1] + 2
# 这里的2 代表 s[i], s[j]
# 否则dp[i] 不变,依旧是之前找到的考虑s[i]的回文数的长度
#dp[0] = 1
# dp[1] = max(dp[1],)
#
# dp= [0]*len(s)
# for i in range(len(s)):
# dp[i] = 1
# max_len = 0
# for j in range(i-1, -1, -1):
# tmp = dp[j]
# if s[i] == s[j]:
# dp[j] = max_len + 2
# max_len = max(tmp, max_len)
# return max(dp)
#
#idea2: 2D-DP
# state: dp[i][j] = 第i个char到第j个char的最长回文数长度
# 而 如果第s[i] == s[j] 那么 dp[i][j] = dp[i+1][j-1] + 2 (加上 s[i], s[j]两个)
# 如果s[i]!=s[j], 那么 dp[i][j]= max(dp[i+1][j],dp[i][j-1]),把s[i], s[j]分别加入回文数看哪个更长
# 所以 dp[i][i] =1
# row, col = string
# 1. iterate s in i
# iterate s in j
# when i != j and s[i] == s[j]-> 找到回文数的相同char
#
dp = [[0]*len(s) for i in range(len(s))]
for i in range(len(s)):
dp[i][i] = 1
max_len = 0
for i in range(len(s)-1, -1,-1):
for j in range(i+1, len(s)):
if s[i] == s[j]:
dp[i][j] = dp[i+1][j-1]+2
else:
dp[i][j] = max(dp[i+1][j],dp[i][j-1])
max_len = max(max_len, dp[i][j])
return dp[0][-1]
Last updated
Was this helpful?