最大正方形

https://www.nowcoder.com/practice/0058c4092cec44c2975e38223f10470e?tpId=188&rp=1&ru=%2Fta%2Fjob-code-high-week&qru=%2Fta%2Fjob-code-high-week&difficulty=&judgeStatus=&tags=&title=&sourceUrl=&gioEnter=menu

#
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
# 最大正方形
# @param matrix char字符型二维数组
# @return int整型
#


# @param matrix char字符型二维数组
# @return int整型
#

class Solution:
    def solve(self, matrix: List[List[str]]) -> int:
        # write code here
        # 方法2 找重合矩阵的最短边, 往右下角遍历, 每次找 dp[i][j-1], dp[i-1][j-1], dp[i-1][j]最短边 +1, 这个1 代表当前为1的元素, 变成加1
        max_len = 0
        if len(matrix) == 0:
            return 0
        for j in range(len(matrix)):
            print(matrix[j])

        rows = len(matrix)
        cols = len(matrix[0])
        dp = [[0 for i in range(cols+1) ] for j in range(rows+1) ]
        for r in range(1, rows+1):
            for c in range(1, cols+1):
                if matrix[r-1][c-1] == '1':
                    min_val = min(dp[r-1][c], dp[r][c-1])
                    dp[r][c] = min(dp[r-1][c-1], min_val)+1
                    
                    max_len = max(max_len, dp[r][c])
            # print("dp row",dp[r], 'r:', r)
        for j in range(len(dp)):
            print("dp: ", dp[j], j)
        # print(dp)
        return max_len*max_len

# import math


# class Solution:
#     def detect_rectangle(self, r, c, m, dp):
#         import math

#         length = int(math.sqrt(dp[r - 1][c]))
#         # print('length:', length, 'r, c',r,c)
#         l_cnt = 0
#         for i in range(length + 1):
#             flag = (
#                 r < len(m)
#                 and c + i < len(m[0])
#                 and r - 1 > 0
#                 and m[r][c + i] == "1"
#                 and m[r - 1][c + i] == "1"
#             )
#             if not flag:
#                 # return False
#                 break
#             l_cnt += 1
#         area = l_cnt * l_cnt
#         return area

#     def solve(self, matrix: List[List[str]]) -> int:
#         # write code here
#         # [[1,0,1,0,0],
#         # [1,0,1,1,1],
#         # [1,1,1,1,1],
#         #  [1,0,0,1,0]]
#         #  问题拆解: 最大, 正方形
#         #  最大: 贪心算法/ DP
#         #  正方形: 怎么定义正方形, 怎么检查正方形
#         #  最小正方形: 1个元素1
#         #  遍历每一行怎么检查正方形:
#         #  1. dp矩阵存放以当前元素为左下角的正方形最大面积
#         #  2. 每次遍历到 m[r][c], 就找 dp[r-1][c]在相邻正方形最大的边长
#         #  3. 然后 m[r][c] 往m[r][c+1], m[r-1][c+1] 方向检查 最大的边长次数的看是否能形成更大的正方形
#         max_square = 0
#         if len(matrix) == 0:
#             return 0
#         rows = len(matrix)
#         cols = len(matrix[0])
#         dp = [[0] * cols] * rows
#         for r in range(rows):
#             for c in range(cols):
#                 if matrix[r][c] == "0":
#                     dp[r][c] = 0
#                 else:
#                     if r == 0:
#                         dp[r][c] = 1
#                     else:
#                         area = self.detect_rectangle(r, c, matrix, dp)
#                         area = max(area, 1)
#                         dp[r][c] = area
#                             # dp[r][c] = (int(math.sqrt(dp[r - 1][c])) + 1) ** 2
#                         # else:
#                             # dp[r][c] = 1
#                 max_square = max(max_square, dp[r][c])
#             print("dp row",dp[r], 'r:', r)
#         # print("dp: ", dp)
#         return max_square


# # dp: [
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# #     [1, 0, 1, 1, 0, 4, 1, 0, 0, 0],
# # ]

# [
#     [1, 0, 1, 1, 1, 1, 1, 0, 0, 0],
#     [1, 0, 1, 1, 1, 0, 0, 0, 0, 0],
#     [1, 0, 1, 0, 1, 1, 1, 0, 0, 0],
#     [1, 1, 0, 1, 1, 1, 1, 0, 1, 0],
#     [1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
#     [1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
#     [1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
#     [1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
#     [1, 1, 0, 1, 1, 1, 1, 1, 0, 0],
#     [1, 0, 1, 1, 0, 1, 1, 0, 0, 0],
# ]

Last updated