1800. Maximum Ascending Subarray Sum
Given an array of positive integers nums
, return the maximum possible sum of an ascending subarray in nums
.
A subarray is defined as a contiguous sequence of numbers in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr]
is ascending if for all i
where l <= i < r
, numsi < numsi+1
. Note that a subarray of size 1
is ascending.
Example 1:
Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
Example 2:
Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
思路: DP
由于是连续的subarray每次只要和前面的arr[i-1]对比看符不符合条件,所以只要一个loop
state: 当前第i个element的符合条件arr[i]>arr[i-1]的cumulative sum,
转移方程是 if arr[i]>arr[i-1], cum-sum += arr[i] otherwise, cum-sum = arr[i]
optimal solution 是当前的最大值
class Solution:
def maxAscendingSum(self, nums: List[int]) -> int:
#
#
#test case: [10, 20, 30, 5, 10, 50]
#
#
if not nums:
return None
cum_sum = max_sum = nums[0]
for i in range(1, len(nums)):
if nums[i] > nums[i-1]:
cum_sum += nums[i]
else:
cum_sum = nums[i]
max_sum = max(max_sum, cum_sum)
return max_sum
Last updated
Was this helpful?