LeetCode-Notes
  • Introduction
  • Records of Practice
  • 关于Github 不支持密码问题
  • 面试题
    • 搜索广告
    • 多模态大模型
    • 刷题记录
  • 算法代码实现
  • Python
    • Python 笔记
  • Spark
    • PySpark
    • Spark Issues
    • Spark调优笔记
  • FeatureEngineering
    • Feature Cleaning
    • Feature Selection
    • Feature Transformation
    • Feature Crossing
  • Recommendation Algorithm
    • Recall-and-PreRank
      • Non-Negative Matrix Fatorization(NMF)
      • Fatorization Machine(FM)
      • User-base/Item-base实现
      • 多路召回实现
    • Ranking
      • NeuralFM
      • DeepFM
      • Deep&Cross network (DCN)
    • DeepLearning-Basic
      • Attention
      • Dropout
      • Batch Norm
  • Machine Learning
    • XGBoost
    • Cross Entropy Loss
    • Other models
  • Graph Neural Network
    • GNN-1-Basic
  • Big Data
    • Reservoir Sampling
  • SQL
    • SQL and PySpark functions
    • Query Film Infomation
    • Create, Insert and Alter Actor Table
    • Manage Employment Data
    • Manage Employment Data -2
  • DataStructure
    • Searching
      • Find power
      • 2 Sum All Pair II
      • Two Sum
      • Search in Rotate Array
      • Search In Shifted Sorted Array II
      • Search in 2D array
      • Three Sum with duplicated values
      • Median of Two Sorted Arrays
    • Array
      • Longest Consecutive Subarray
      • Merge Two Array in-place
      • Trapping water
      • Rotate matrix
    • Sorting
      • Merge intervals
      • 排序
      • 最小的k个数
      • Find TopK largest- QuickSelect快速选择 method
      • MergeSort Linkedlist
      • 第K大元素
    • LinkedList
      • Reverse LinkedList I
      • Reverse K-group linked list
      • Detect Start of Cycle
      • HasCycle
      • DetectCycle II
      • 链表的共同节点
      • 链表中倒数第k个节点
      • 删除链表倒数第k个节点
      • 合并两个链表
      • 在排序数组中查找元素的第一个和最后一个位置
      • 删除链表里面重复的元素-1
    • Tree
      • Find Tree height (general iteration method)
      • Check BST and Check CompleteTree
      • ZigZag Order traversal
      • Binary Tree diameter I
      • Maximum Path Sum Binary Tree
      • Maximum Path Sum Binary Tree II
      • Binary Tree Path Sum To Target III
      • Tree diameter 树的直径II
      • Tree ReConstruction
      • Check if B is Subtree of A
      • The Kth smallest in Binary Search Tree
      • 打印Tree的右视图
      • 二叉搜索树的后序遍历序列
      • 重建二叉树
      • 判断二叉树是否对称
      • Path Sum to Target in Binary Tree
      • Tree-PreOrder-InOrder-PostOrder
    • Heap&Queue
      • Top-K smallest
      • 滑动窗口最大值
      • Find the K-Largest
    • 合并k个已排序的链表
    • String
      • Reverse String
      • 最长不含重复字符的子字符串
      • 最长回文串
      • 最长回文子序列-DP
    • DFS/BFS
      • Number of island
      • Number of Provinces
      • All Permutations of Subsets without duplication
      • All Permutations of Subsets with duplication
      • Combinations Of Coins
      • All Subset I (without fixing size of subset, without order, without duplication)
      • All Subset of K size without duplication II
      • All Subset of K size III (with duplication without considering order)
      • All Permutation II (with duplication and consider order)
      • Factor Combination-质数分解
    • DynamicProgramming
      • DP-解题过程
      • Find Continuous Sequence Sum to Target
      • 1800. Maximum Ascending Subarray Sum
      • NC91 最长上升子序列
      • 查找string的编码方式个数
      • Maximum Product
      • Longest Common Substring
      • Longest Common Substring-II
      • minEditCost
      • Backpack I
      • Array Hopper I
      • Minimum distance between strings
      • 最大正方形
  • Big Data Algorithms
    • Big Data Processing Algorithms
      • Reservior Sampling
      • Shuffle
      • MapReduce
      • Bloom Filter
      • BitMap
      • Heap For Big Data
Powered by GitBook
On this page
  • 1. Links
  • 2.题目描述
  • 输入
  • 返回值

Was this helpful?

  1. DataStructure
  2. Heap&Queue

滑动窗口最大值

1. Links

2.题目描述

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。窗口大于数组长度的时候,返回空 示例1

输入

复制

[2,3,4,2,6,2,5,1],3

返回值

复制

[4,4,6,6,6,5]

3. Idea

1 heap method

Code: Heap

# -*- coding:utf-8 -*-
class Solution:
    def maxInWindows(self, num, size):
        # write code here
        # input: num: array, size= window 
        # base case: num: none-> none
        #  window<=1: reutnr num
        #  window > num length: return [array max ]
        #1. idea
        #   simplest:  one pointer 
        #      iterate array using one pointer until pt + size-1 >=len(num):
        #        use sliding to extract max value in window and append it to res array
        #  Time: O(n) iterate * O(n) -> O(n)  Space: O(m), m= number of window
        #
        # idea 2:
        # max heap = window or min heap with inverse value
        # heap top  = current max
        # heap store (value, index)
        # one pointer : pt
        # move pt until pt+ size-1 >=len(num):
        #   add new element (value, index) to max heap
        #   check top element in heap index inside [pt, pt+ size-1] or not?
        #   if os, add top element to res
        #    else: pop top of heap until element insize this range
        # k =size
        # Time: O(klogk) + O(n) * O(2logk) -> O(klogk + n*logk)
        # space: O(n) for storing element in heap
        #
        # idea 3: monontonic queue 单调队列
        # window = 一个单调队列  i< j  q[i] < q[j] 存放 value, index
        # 每次move by1 时 对比 新进来的元素和queue的最后一个元素(max value)对比
        # if new element > max value, then append it to queue , then check if
        # the first element in queue is still inside range of window, if not pop
        if len(num)==0 or size <=0 or size > len(num):
            return []
        if size ==1 or len(num)==1:
            return num
        
        import heapq
        heap = [ [-num[i], i] for i in range(size)]
        heapq.heapify(heap)
        res = [-heap[0][0]]
        i = 1
        while i+size-1 < len(num):
            heapq.heappush(heap, [ -num[i+size-1], i+size-1])
            while len(heap)>0 and not (heap[0][1] >= i and heap[0][1]<=i+size-1):
                heapq.heappop(heap)
            if len(heap)>0:
                res.append(-heap[0][0])
            # move forwar dwinow
            i += 1
        return res
            
            
        
        
        
       

2. monotonic queue 单调队列用于window

PreviousTop-K smallestNextFind the K-Largest

Last updated 4 years ago

Was this helpful?